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Background

Out-of-Distribution Detection

@ Task: The trained network deployed in the wild would be exposed to
the unknown out-of-distribution (OOD) data, which is different from
the known in-distribution (D) training samples.

@ Aim: The model should predict correctly on the |D data, and refuse
to make inference when the test input is from OOD.

@ Challenge: The network makes overconfident prediction on the

OOD data [1].
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Figure 1: The model makes overconfident prediction on unrecognizable OOD!
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Background

Distance-based Methods

@ Distance-based methods assume that the |D test data is closer to the
known training samples with same category than the OOD data.
Considering the limitations of classifier retraining in practical scenario,
there are two different strategies:

o Mahalanobis distance [2] for pre-training
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o Euclidean distance [3] for retraining
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Background

Idea

@ We further extend the above discrepancy of distance to the closest
class in latent space with reconstruction error from autoencoder.
e The extracted representations by autoencoder are enforced to contain
important regularities of the |D data.
e OOD inputs are poorly reconstructed from the resulting
representations due to the irregular patterns.

Figure 2: Reconstruction error from autoencoder.
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READ

Training

@ Loss function: The formulation is defined as follows:
o Classifier (CLF)

Lerr = Ex,y)~ppmain[— log Fy (x)] (6)
e Autoencoder (AE)

Lag = By xen[[|x — X|3] (7)

Figure 3: Illustration of training process.

@ The CLF and AE are independent components.
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READ

Transformed Reconstruction Error

@ The reconstruction error is measured in the classifier latent space

instead of raw pixel space.
o Reach unification with distance measurement.

o Bridge the semantic gap & show competitive distinguishability.

@ Pre-training (READ-MD)

(% ¢ _@xu %7, © Xou # Foud)

Scoreree = —((fo(X) = fo (%)) £ (fo (x) — o (%))

e

@ Retraining (READ-ED)
(Iz—2[3) (9)

Scoréree = —

Figure 4: Transformed reconstruction

error.
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READ

Adjustment Coefficient based on Image Complexity |

@ Overconfidence! The transformed reconstruction error is small for
specific OOD data.
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Figure 5: Overconfident reconstruction error.

o Observation: The reconstruction error and image complexity is
correlated. Simpler representations are required for easy image
description, thus bring smaller reconstruction error.
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READ

Adjustment Coefficient based on Image Complexity Il

@ Adjustment. Adjust the overconfident reconstruction error with
image complexity.
e Characterization of OODs: A proxy to quantify the “easiness” of
OOD by off-the-shelf lossless image compression algorithm [4, 5].
o Re-scale reconstruction error: The transformed reconstruction error
for OOD input with small image complexity is re-scaled by coefficient A.
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Figure 6: Adjust reconstruction error.
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READ

Inference

@ Score function: The definition of score function is defined as follows:
Score = —Score.y, — A x Scorepec (10)

o Input perturbation: This strategy brings larger gain on Score for 1D
samples [6].

X = x — e x sign(—Vx(Scorea(x) + Scoreec(x,%X)))  (11)
e Considering that test time OOD data is unavailable, the choice of

hyperparameters depends on metric FPROTPR95 of ID and
synthesized OOD data.
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READ

Overall Concept

o lllustration of the proposed method.
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Figure 7: READ
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Experiments

Main Results |

@ We do not rely on real auxiliary OOD training data.

@ READ achieves SOTA performance under both pre-training and
retraining scenarios.

e READ-MD
D 00D FPR@95TPR | AUROC 1
MSP/7ODIN/Maha/ Energy /READ-MD (ours)

SVHN 48.3/33.27153/354/12.0 91.9/92.0/97.0/91.1/97.5
LSUN (c) 42.4/29.7/31.6/19.1/283 93.6/92.8/94.1/96.0/94.9
Textures 59.5/49.5/18.0/52.5/10.3 88.4/84.7/96.3/85.4/98.0
=1 Places365 60.5/57.7/74.2/40.9/75.5 88.1/84.3/80.3/89.7/80.7
o CIFAR-100 62.9/60.7/71.8/50.5/76.5 87.8/82.7/79.7/87.1/79.2
£ TIN (c) 54.3/37.3/37.1/38.3/19.9 90.5/91.6/92.9/91.5/96.5
O LSUN (r) 52.0/26.5/34.1/27.9/9.4 91.5/94.6/94.2/94.1/98.3
TIN (r) 60.8/39.1/34.1/46.5/12.3 88.2/91.3/93.5/89.0/97.7
iSUN 56.4/32.4/33.5/33.9/125 89.9/93.4/93.9/92.6/97.6
average 55.2740.7/38.9/38.3/285 90.0/89.7/91.3/90.7/93.4
SVHN 85.0/82.1/58.0/92.2/67.9 70.3/69.1/85.3/73.6/81.8
LSUN (c) 79.0/66.8/63.5/75.4/61.7 77.6/81.2/82.0/83.1/83.1
Textures 83.1/78.8/36.9/78.0/35.6 73.4/72.9/90.9/76.0/92.1
S Places365 82.9/88.4/90.6/81.3/91.7 73.4/70.5/64.5/75.4/63.3
; CIFAR-10 81.8/89.2/93.9/82.4/95.0 75.1/70.1/61.9/77.2/69.3
= TIN (c) 78.5/74.4/41.5/63.1/29.8 76.5/80.0/91.0/81.2/93.6
o LSUN (r) 82.5/73.9/22.71/62.0/10.9 74.5/80.3/95.7/79.1/97.6
TIN (r) 823/71.6/25.3/63.5/14.7 73.7/80.2/94.8/71.5/97.0
iSUN 83.1/70.6/26.2/62.3/15.5 75.0/81.4/94.3/78.9/96.3
average 82.0/77.3751.0/73.4747.0 74.4776.2784.5/78.0/84.9

Table 1: Comparison with post-hoc methods. 1 (}) indicates larger (smaller) values are better. Bold numbers are superior.
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Experiments

Main Results Il

@ READ achieves SOTA performance under both pre-training and
retraining scenarios.

o READ-ED
FPR@ISTPR | AUROC T

m 00D < e TN “E7READED (ours)
SVHAN T1.1/9.778.3/10.3 98.0798.1798.2797.9
LSUN (c) 6.1/11.0/3.1/2.8 98.9/97.9/99.3/99.4
Textures 26.6/22.0/19.3/14.9 94.9196.0/96.7/97.4
B2 Places365 42.0/34.1/25.8/25.7 91.4/92.6/94.6/94.6
I CIFAR-100 53.7/452/45.1/44.7 88.3/89.9/90.7/90.8
£ TIN (c) 8.1/20.9/8.1/42 98.5/96.2/98.5/99.1
5] LSUN (r) 3.0/13.4/2.7/13 99.3/97.4/99.3/99.7
TIN (1) 6.2/240/8.6/4.5 98.8/95.6/98.3/99.1
iSUN 28/16.1/2.7/15 99.3/97.0/99.3/99.6
average T77721.8713.77123 96.4795.6/97.2797.5
SVHN 65.6/78.2/36.6/6390 85.2783.6/94.0/89.5
LSUN (c) 35.3/46.2/254/31.1 93.3/90.4/95.4/94.6
Textures 80.0/40.7/21.7/17.9 77.2191.7/95.5/96.3
g Places365 79.5/76.6/81.4/83.3 76.8177.5176.4175.7
& CIFAR-10 83.6/84.1/87.1/90.5 71.2/75.0/70.5/69.3
£ TIN (c) 63.1/51.0/25.9/14.5 87.1/90.1/95.3/97.5
g LSUN (r) 75.6/56.7/22.9/6.5 85.2/88.6/95.7/98.7
TIN (1) 73.5/51.0/20.6/7.9 84.6/89.8/96.0/98.5
iSUN 78.6/57.0/24.7/10.5 83.8/88.7/95.2/97.9
average 69.5/60.1/38.5/36.2 82.7786.1790.4790.9

Table 2: Comparison with retraining methods. 1 (}) indicates larger (smaller) values are better. Bold numbers are superior.
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Experiments

Ablation Results

@ The extension from transformed reconstruction error improves the
discrimination between |D & OOD.

@ Adjustment coefficient and perturbation strategy play a vital role in

READ.
—Scorecial —Scorerec | —(Scoreca + Scorerec) Method  Adj Pert FPR@95TPR |  AUROC T
Method FPR@95TPR | AUROC 1 - - 37.6 90.8
READ-MD __ 46.3/553/37.6___ 90.2/75.4/90.8 READMD - ¥ 299 927
READ-ED __ 13.7/78.7712.4 __ 97.2/59.17973 3 333 923
v Y 28.5 934
’_I‘ab_le 3: 00D detection results for combination study. 1 (1) Table 4: OOD detection results for ablation study. 1 () in-
indicates larger (smaller) values are better. The results are dicates larger (smaller) values are better. Bold numbers are
averaged on nine QOOD test datasets. Bold numbers are su- superior results. Adj and Pert mean adjustment and pertur-
perior results. bation respectively.
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o Contribution

o We propose a novel reconstruction error aggregated detector (READ)
and its two variants, READ-MD and READ-ED, which combine the
distance to the closest class and reconstruction error in the latent space
of classifier.

e Against the overconfidence of transformed reconstruction error, we
explain and alleviate this problem by a fine-grained characterization of
OOD data and an image complexity based adjustment coefficient.

e We conduct comprehensive analysis with experiments under both
scenarios to demonstrate the effectiveness of the proposed methods.

@ Learn More!
o Paper: https://arxiv.org/abs/2206.07459

o Code: https://github.com/lygjwy/READ
o Contact: https://lygjwy.github.io
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